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TECHNICAL MEMORANDUM

WEAR MECHANISMS FOUND IN ANGULAR CONTACT BALL BEARINGS OF THE

SSME'S LOX TURBOPUMPS

I. PURPOSE OF THE STUDY

[.

This study was aimed at gaining some insight into the physical phenomena occurring in bearings

of the liquid oxygen (lox) turbopumps, which could subsequently be used to improve their life expec-

tancy. The overall objective of the project was to acquire detailed factual information on wear of angular

contact ball bearings operating in the lox environment of the turbopumps.

Immediate Objective: Determine the wear modes active in ball bearings operating in lox.

Further Objectives:

1. Determine the degree of participation of the known wear modes in the overall wear of the lox

turbopump bearings.

2. Evaluate the effect of operational variables on the wear rate of the lox turbopump beatings.

3. Reevaluate design criteria for bearings operating in lox.

Imolicit Goal: Extend bearing life.

II. GENERAL APPROACH

., _,,

= i¸• •_,i

i_•,i_/:••_/ ,.

1. Study present and past lox turbopump bearing wear.

2. Isolate the wear controlling mechanisms.

3. Devise methodology and design program plan.

4. Implement the plan, keep on updating.

5. Communicate results with the scientific community.

IH. GENERAL METHODOLOGY

The general methodology adopted for this primarily experimental study relies upon the strict

scientific collecting of unbiased raw evidence on wear of bearing elements, relating it to the known wear
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modes pertaining to the similar tribological applications, and drawing conclusions based on this evi-

dence. The methodology involves the following major tasks:

1. Collect evidence and search for clues to prevalent wear modes by studying:

a. Wear tracks on flight and test turbopump bearings

b. Wear debris from bearings named above and from bearings currently tested utilizing the

bearing and seal materials tester (BSMT).

2. Cross correlate evidence from a and b above, and interpret it in terms of the state-of-the-art

on tribology data bases. Draw conclusions regarding wear modes.

3. If a clear wear mode emerges from 2 above,

a. Determine the critical variables

b. Evaluate their effect on bearing wear rate by modeling and/or testing

c. Otherwise, return to item 1 for more evidence and further study.

4. Project the results of item 3 above on design criteria for the lox turbopump beatings.

The research reported on in this report has been performed on engine turbopump bearings, actual

space flight hardware, after it has been retrieved, under the strict requirement that only nondestructive

testing (NDT) be allowed. This limitation excluded some traditional procedures, such as sectioning,

etching, hardness testing, etc. However, availability of modern NDT and surface analytical tools at
Marshall Space Flight Center (MSFC) has more than made up for the limitation as far as meeting the

objectives of this study, i.e., determination of the major wear modes, is concerned.

In a way, all research presented here has been searching for clues and explanations to what

happened to bearings in engine service, based upon the microscopic record of various tribological and

mechanical events that had shaped the final morphology of the bearing balls, races, and cages. Thus, it

has been a de facto forensic investigation.

IV. DETAILED METHODOLOGY

Nine No. 2 phase II high-pressure oxidizer turbopump (HPOTP) bearings were selected for a

detailed study, based on the wear record andavailability only. Wear debris from these bearings was

carded away with the lox that passed through them in the space shuttle main engine (SSME), but the

BSMT wear debris from the ongoing tests designed to simulate operation of the HPOTP beatings has

been available for the study, and it provided some very important clues.

The following is an itemized outline of the techniques and instruments used to collect and/or

analyze the experimental data. The items quoted below refer to "general methodology."

2



Ad 1- Collect evidenceandsearchfor clueson flight bearingsandweardebris.

1.1 NDT only.

1.2 Scope:studywearin thelox turbopumpbearingNo.2.

1.3 Bearingselectioncriterion:wearrecord.

1.4 Samplingrate:9 bearings,populationof 180.

1.5 Extentof research:

a. Microgeometry

b. Topography

c. Morphology

d. Structure

e. Compositionof theupperlayersfor theweartracksof ballsandrings.

1.6 Analytical techniques/instrumentsemployed:

a. Opticalmicroscopy(OM)

b. X-ray photoelectronspectroscopy(XPS)

c. Auger electron spectroscopy (AES)

d. Electron microprobe with scanning electron microscopy (SEM) and electron diffraction

spectroscopy (EDS)

eo SEM

f. EDS

g. Form Talysurf profilometry (FTP)

h. X-ray fluorescence spectroscopy (XFS)

i. 0.00001-in mechanical micrometer (MM)

j. 0.01-rag digital scale.

1.7 "Clues" include all surface features observed and/or recorded on wear tracks of balls and

races using the techniques named in item 1.6, and, in particular, the following:
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a. Spalls

b. Pits

c. Indentations

d. Scratches

e. Holes

f. Deposits

g. Debris on the surface

h. Size, shape, location, orientation, etc.

i. Analytical data on surfaces features, e.g., deposit chemistry by means of EDS.

V. WEAR MECHANISM

Traditionally, in describing wear phenomena, authors enjoyed a dose of liberty which often

resulted in an ambiguity or confusion in the literature regarding the classification I of wear. Wear

terminology quite often reflects that situation by not having any well defined boundaries for such
commonly used terms as "mode, ''2 "mechanism," and sometimes "process." Herein, the f'u'st two terms

are being used nearly simultaneously. Thus, a wear mechanism (mode) is a means of removal of wear

particles from the surface.

This study has confirmed the existence of the following generic wear modes acting simultane-

ously in turbopump bearings:

.

2.

3.

.

5.

6.

Adhesion (smearing, scaling)

Abrasion

Fatigue:

a. Spalling (pitting)

b. Flaking (delamination)

Oxidation

Gouging (plastic deformation)

Corrosion.

4
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VI. FINDINGS AND CONCLUSIONS

After a thorough study of all relevant literature and a careful analysis of all pertinent results, the

following findings and/or conclusions have been drawn:

1. There is evidence of several known wear modes.

2. A mode dominating the wear picture is the adhesive/shear peeling of the upper layers. For the

phase II HPOTP bearings, this mode relies upon the mechanisms of scale formation and removal.

3. The dominant wear mode discovered in the phase II HPOTP bearings has a universal charac-

ter. The mode has been confirmed on:

a. Turbopump bearing balls and rings

b. BSMT tested balls in lox and liquid nitrogen (LN2)

c. Brand new 1/2-in balls

d. Failed turbine bearings. 22

4. Oxidation accelerates wear by rapidly rebuilding the upper oxide layer (scale) under the

operating conditions (high contact and shear stress, and high temperature at real contact areas).

5. It appears that a major cause of wear in phase II HPOTP bearings is the lubrication which is

inadequate for the imposed conditions of operation. Likewise, cooling seems to be inadequate.

VII. DETAILED EXPLANATIONS

:i

A. Background

Preloaded angular contact ball bearings are commonly used in a variety of spacecraft applica-

tions, 3 ranging from very light duties of controlling movement of shutters or pointing antennas, to the

very heavy duty of supporting turbine rotors. Under the best of circumstances, these bearings can reli-

ably support the combined radial and axial loads and accommodate the unavoidable thermal distortions
of the space hardware over a wide range of operational variables in a light duty service, wherein loads

and/or speeds are low.

Lubrication in rocket motors, and in outer space in general, is difficult because of the weight

limitations which virtually eliminate all heavy auxiliary lubrication equipment like pumps, motors,

sumps etc., as well as the limitations imposed by the vacuum environment. 4 With a few exceptions, 5

liquid lubricants cannot be used. The most successful solid lubricants used in outer space 6 are the filled

polytetrafluorethylene (PTFE), sputtered molybdenum-disulfide (Mo-S2), and ion-plated soft metals

(e.g., Pb). Since solid lubricants cannot prevent the solid-solid interaction of the load bearing surfaces,

surface distress and resulting mechanical wear are unavoidable. Successful applications under these

circumstances are the ones which result in a manageable wear rate, in addition to satisfying various other
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requirements. The current HPOTP bearings are lubricated with the PTFE contained within the glass fiber

reinforced cages.

Traditionally, the severity of a bearing application has been judged by the value of its "DN"

product, where "D" is the nominal diameter of the bearing in millimeters, and "N" is its speed in revolu-

tions per minute (r/min). Wear may be low in applications characterized by a low DN value and short or

infrequent operation. However, a high DN value, heavy use, and corrosive or contaminated environment

tend to produce heavy wear. In most space applications, these bearings operate well below 1 million DN

(1 MDN) but not in the case under consideration.

Bearings of the HPOTP of the SSME operate at approximately 2 MDN in the lox environment

which precludes any effective liquid film lubrication and imposes cryogenic temperatures, high thermal

gradients, and heavy transient loads. Under these conditions, bearings fail from excessive wear despite

application of the best available materials, best workmanship, and the state-of-the-art installation and

maintenance techniques. There is no engineering data base available on life rating for these bearings,

except for the general guidelines by NASA, 7 and no reasonable extrapolation to standard rating proce-

dures (compare Anti-Friction Bearing Manufacturers Association (AFBMA)) can be made because of

the exoticism and the severity of application.

These separable, angular contact ball bearings are made of 440C stainless steel, have a cus-

tomized internal geometry, and work in a back-to-back preloaded tandem. They were not reusable in the

past due to their high wear and the strict safety and reliability precautions imposed by NASA. Current

HPOTP bearings sustain two to three flight cycles, depending on the outcome of the individual inspec-

tion carried out after each flight. Scrapped bearings, after dismantling and cleaning, are being deposited

as permanent material records and thereby preserved for future reference, such as the one reported
herein.

Many technical issues related to the HPOTP bearings have been studied recently, ranging from

the performance 8 and materials 9 to a new cage design 1° and testing, 11 and optimization of race
curvatures 12 for heat generation and stress. Naerheim et al.13 have evaluated the maximum operating

surface temperature of the bearings to be in the range of 600 °C, based upon the postmortem Cr/Fe ratio

of oxides found on the wear tracks. Dolan 14 analyzed conditions and requirements for cooling of the

bearings and suggested that a "vapor blanket" may form around some balls thereby worsening

dissipation of the internally generated heat from the bearings. He also updated the status of the NASA-

MSFC ongoing test program 15 which employs MSFC's own BSMT facility.

Analysis of the cage stability 16 for the bearings has indicated that inadequate lubrication under

some conditions may lead to an increased risk of unstable oscillations. These could result in an overload

leading to cage failures (documented) and/or irreversible (anticipated) 14 vapor insulation of balls, pro-

ducing a "thermal runaway" which may cause an imminent bearing failure.

Failures of lubricated rolling bearings have been studied very extensively. 1718 Consequently, the

combined body of knowledge on pitting, smearing, fretting, etc., is usually sufficient to design reliable

bearing systems. However, wear of rolling element bearings remains largely unexplored in general, 19

and particularly wear dynamics and participation of recognized modes of surface wear and effects of
variables remain unknown.

Wear of the HPOTP bearings has been investigated in a macroscale, using the engineering

approach1415 and the existing BSMT facility. Recently, the phase II HPOTP bearing wear problem has

• • ",( 6
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been approached by the author in microscale, using the actual HPOTP spent flight bearings and a broad

range of surface analytical tools and instruments. 2° To date, there has been no data base for comparisons
on wear of high-speed, angular contact ball bearings operating in the lox environment, other than NASA
and their contractors' files and related disassembly reports. Likewise, there has been no literature on the

subject discussed here in application to the actual space hardware. This report presents the dominant
wear modes discovered on the turbopump bearings.

B. Bearing Environment and Operating Conditions

A simplified cross section of the HPOTP showing the main shaft support configuration is given

in figure 1. The bearing studied in this report is the second bearing from the left (marked (2)) which

works in a back-to-back preloaded tandem arrangement with an identical bearing to the left of it (marked

(1)). A carefully controlled axial preload is exerted by a custom design beam spring placed between the

outer rings of the bearings as shown. Both bearings are cooled by the same steady stream of lox passing

axially through them from the pump end, left to right.

Operating conditions for the No. 2 bearing of the phase II HPOTP are shown in table 1. The data
listed in it are believed to average and approximate the overall conditions of operation as they pertain to

the bearing population being examined in this paper. They do not represent a coherent set of recorded
"test data" as most readers are accustomed to seeing in strictly controlled experiments because each test

specimen in this study comes from a different turbopump and a different flight of the space shuttle and
not from a controlled tribology experiment. Direct measurements for some variables listed in table 1

were impractical (e.g., loads) or even impossible (e.g., ball temperatures) to accomplish due to a lack of

access to these bearings in the flight service and/or their explosive environment (lox). Also, there is no

single source of information on which to rely in re-creating the conditions of operation for the particular
features related to bearing malfunction and/or proposed remedies, while operational variables are treated

as incidental information to the issues. Consequently, there is considerable disagreement among experts

on the operating conditions. This is an open issue in itself, too broad for an exhaustive treatment and out

of scope in this context. The "best" plausible estimates are shown, considering all the available informa-

tion, in order to provide a feel for the extraordinary severity of this application. The following comments

are offered in order to provide more insight.

High power (30,000 hp), high speed (30,000 r/min), and short duration of the HPOTP work cycle

render many important variables of its operation highly time dependent due to the thermal transients
inherent in the turbopump and/or those which are generated in the bearing itself. Likewise, bearing

operating conditions, except for the shaft speed, are transient. Also, individual variations in some com-

ponent dimensions of the HPOTP, despite a strict scrutiny and individual certification, are probably
sufficient to substantially influence bearing loads, especially if thermal effects are considered. Thus, a

considerable scatter of bearing operation variables is unavoidable.

The angular velocity and acceleration of the bearing's inner ring are virtually certain and precise,

although they vary with the power level. The oxygen environment is believed to locally change 14 from

liquid (lox) to gas (gaseous oxygen (gox)) on and near the hot surface tracks of balls. This upsets the
heat balance within the bearing and is believed to be a major cause of a potential thermal instability.

Surface temperatures (table 1) of the race tracks and balls may reach 600 °C, 13 while the outer race

surface temperature in contact with the seat may remain at -150 °C. Thermally induced radial expansion

of the inner ring and balls may cause a loss of bearing operational clearance, resulting in an interference

overload which generates more heat, and further thermal expansion, until the ongoing and thus
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accelerated wear processes restore the bearing clearance. The initially applied coating of dry lubricant

film wears away very rapidly, within a few seconds perhaps, and the PTFE transfer film produced by

attrition from the bail retainer seats is not quite sufficient to keep the bail wear in check. Since solid

lubricants cannot prevent the solid-solid interaction of the load bearing surfaces, a surface distress and

the resulting mechanical wear are unavoidable. This is a favorite wear scenario for the HPOTP bearings

related to their cooling and lubrication.

The radial load consists of constant and aitemating parts (fig. 1). The constant radial load is due

to the rotor weight and static fluid pressure. The alternating part is induced by the fluctuating fluid pres-

sure and a dynamic unbalance. The axial load consists of a design preload component (approximately
1,000 lb) which is superposed on the load components due, primarily, to differential axial displacements

of the bearing caused by the combined actions of the balance piston (fig. 1), thermal expansion, and
changes in fluid pressure. Contact stresses have been shown 3 to be exceedingly high in comparison to

conventional applications, lo i I disregarding the effect of asperity interaction. In addition, these stresses

vary as bearing wear occurs.

C. Materials

Cryogenic applications like this one require careful selection of materials for rolling bearing

components. High strength, hardness, fracture toughness, and stress corrosion resistance are the usual

prerequisites for rolling elements and rings which must withstand repetitive applications of high contact

stresses and the resulting wear and rolling contact fatigue. In addition, dimensional stability at cryogenic

and elevated temperatures, corrosion resistance, and compatibility with the lox environment, as

measured by the NASA autoignition test, are required. The AISI 440C martensitic stainless steel

(table 2) satisfies these requirements reasonably well except for the wear resistance. All bearings

analyzed here are made of the 440C.

Other materials involved include Armaion ball retainers, solid lubricants, and lox. They influence

lubrication and cooling and thereby affect all tribologicai features of this very unique and technologi-

caily critical application, wherein weight limitations and potential exposure to the vacuum environment 4

impose special constraints on the lubrication system and lubricants. The current HPOTP bearings are

lubricated with an initial coating of dry lubricant and a transfer film of PTFE from the ball retainers. The

retainers are made of Armalon, a composite material, made of the polytetrafluoroethylene (PTFE,

Teflon) reinforced with glass fibers whose chemistry is composed of the following oxides: 54.3 percent

silicon (Si), 17.2 percent calcium (Ca), 15.2 percent aluminum (A1), 8 percent boron (Bo), 4.7 percent

magnesium (Mg), and 0.6 percent sodium (Na). Load bearing surfaces of these bearings are initially

sputter-coated and cured with a dry lubricant composed of 35 percent Mo-S2 and 65 percent antimony-

oxide (Sb2-O3).

Undesirable, yet present on most bearing surfaces, as shown by the EDT diagrams, are the con-
taminant particles carried by the stream of lox flowing through the bearings. Liquid oxygen is the pro-

cess fluid of the HPOTP as well as the coolant for the bearings.

8



VHI. DETAILED EXPLANATIONS: RESULTS

A macroscopic (low magnification) investigation of the spent turbopump bearings has revealed

the existence of a variety of wear patterns on balls (fig. 2). Wear patterns of rings and cages did not vary

as much. Lightly worn (fig. 2(4)) balls, below 0.0025 mm (0.0001 in) diameter loss, usually had a

golden background marked with several crisscrossing narrow wear tracks. Heavily worn (fig. 2(6)) balls,
above 0.0125 mm (0.0005 in) diameter loss, usually were gray and had one or two wide wear tracks and

a polar cap, all indicative of a stable operation resulting from stable dynamic behavior. This behavior is

related to the growing dynamic unbalance of worn balls with wear which leads to the stable orbit of a

ball in an inertial space because the wear track of the ball in an angular contact ball bearing under axial
load is shifted from the equatorial position, thereby creating an unbalance. Kawamura and Touma 21 have

demonstrated this effect.

A great majority of the SSME flight bearings consistently show ball wear in the range of 0.0025
to 0.0075 mm. The most heavily worn bearing presented in this report is a developmental one which

sustained 19 starts and 132 min of HPOTP operation on the ground and whose diametral loss reached

0.048 mm. It was included in this study for the sake of broadening the wear investigation.

Microscopic examination of bearing wear tracks has revealed a wealth of surface features. Races

of heavily worn inner rings (IR) usually carry three or four distinct wear patterns like those shown in

figure 3. High axial loads leave evidence of plastic flow on the high shoulder (fig. 3(1)), followed by a

rough band of adhesive/shear peeling (fig. 3(2)). Interestingly, Averbach and Bamberger 22 found a strik-

ingly similar wear pattern on marginally lubricated bearings of a gas turbine, as shown in figure 3 of

their report, which they blamed on ball skidding. A featureless, highly polished (by rolling) area is next

(fig. 3(3)), followed on the cylindrical portion of the race by a band of rolling contact microfatigue

caused by a radial overload. This band has been further studied in figure 4. Spall sizes varied from 20 to

200 micrometers, their depth usually ranging a few micrometers.

A large spall in figure 4(2) shows a nearly straight edge on the left (fig. 4(3)), a grainy bottom,

and a thin chip (fig. 4(3)) still hanging on. An EDS diagram in figure 4(6) shows an unusually heavy
concentration of chromium (Cr) inside the spall, which may indicate a high subsurface temperature

(compare Naerheim 1°) or a presence of a large subsurface carbide. An EDS diagram for the baseline

440C is shown in figure 4(6).

Lightly worn rings do not show microfatigue on their surfaces, but adhesive/shear peeling can

always be identified on them. All rings and baUs displayed some evidence of contamination damage in
the form of indentations, scratches, and punctures. This evidence has been shown on the photographs in

the appendix.

Ball surfaces (fig. 5) whose patterns radically change from place to place are particularly rich in

wear morphology. Apparently, the load-speed-temperature history in a microscale varied dramatically
on ball surfaces due to changes in relative rolling and sliding motions, as well as an occasional skidding

and/or colliding with a cage. There is evidence on balls of many wear modes, including the adhe-

sive/shear peeling, macrospalling, abrasion, contamination, oxidation, plastic deformation, and some

corrosion. The predominant wear mode is the adhesive/shear peeling of the oxide scale. It has been

found in all the bearings studied regardless of the length of their service or the extent of wear (compare

appendix).

9



A seriesof microphotographsin figure5 showsthismode.Thedarkareasareshallowspalls
from which wearflakeswereremoved.Only theflat bottomsof thosespallsarein focus,dueto some
technicallimitationsof theopticalmicroscopewhosedepthof focusat themagnificationof x 1,000was
lessthanthedepthof thespans.However,whenfocusedon theupperlayer(notshownhere),the
generalsurfacemorphologyremainedunchanged.This factprovesthatthesamewearmechanisms,
namelyscaleformation-breakdown-and-removal,haveformedboth lowerandupperlayers.

Crackingof theupperoxidelayer,i.e., scale,is shownin figure 6(1),peelingin figure 6(2),and
weardebrisinsidethespall in figure6(3).Theelementalcompositionby EDSof thebottomof thespall
is shownin figure 6(4). It canbeseenthatit containselementsforeignto thebase440Candthecage
material,like zinc (Zn) andtitanium(Ti) whichmayhaveenteredthebearingwith the lox ascontami-
nants.TheXFS andSEM/EDSanalyses(seeappendix)of thesolidresiduefound on theinlet filters to
theBSMT haveconfirmedparticipationof manycontaminants,includingTi andZn, in the lox stream.
An overallEDSanalysis(fig. 6(5)) of theball surfacedid notshowZn or Ti, sotheir presenceseems
limited to mostlyspallcavities.Thatis becauseamechanicalremovalof smallparticlesfrom insidea
spallby anymicroscopiceventsoccurringon theballsurfacesis unlikely. It canbeseenon
microphotographsthatweardebrisshowsupinsidecavitiesratherthanon thetoplayers.

Figure7 showsasequenceof photoswhichhelpedin resolvingamajorwearmodeactiveona
ball surfaceduringanearly stageof service.Thisball hadnegligiblewear,beyonddetectionby a
mechanicalmicrometer.However,a destructivemodeof adhesive/shearpeelingof theupperlayers
(oxidescale,usually)hasalreadybegunon its surface,ascanbeseenat amagnificationof x 1,000.This
wearmodehasbeenidentifiednot onlyin all theexaminedturbopumpandBSMT bearingsoperatingin
lox but alsoin bearingstestedin liquid nitrogen,andevenon thesurfacesof thebrandnew 440Cbails.
That is sobecausetheir superfinishreliesuponthemechanicalwearby anabrasivematerial,andlight
abrasionof the440Cstainlesssteelshowsadhesiveshearandnotplasticplowing asamajorwear
mechanism.

Figures8(1)and8(2) showtheoriginalmachiningmarksasfine dot-linesstill visible on thesur-
faceof the lightly wornball, andfigure8(3) showsashinysurfaceof abrandnewbail. Underax 1,000
magnification,thesewell-aligneddotsprovedto beveryshallowpits just like thoseproducedby the
adhesive/shearwearmodediscussedearlier.Obviously,thefinish markscomefrom thesliding (shear)
wearin which adhesionplaysa majorrole.Thus,theadhesive/shearpeelingmodeis quite universal.
Thedifferencebetweenhigh andlow wearin thismodeliesin therelativesizeanddepthof spallsand
their numberon thesurface,i.e., on thewearkinematics.Weardynamicsis anothermatter,andit needs
further investigation.

A heavyweargoestogetherwith largeanddeepspallsdenselypackeduponthesurface,while a
light wearis characterizedby smallandshallowspaUs,whicharerathersparselypopulatedon thetrack
surface.

Someheavilyworn ballsshowcoexistenceof adhesive/shearmodewith shallowpitting mode.It
seemsvery likely thatthe adhesive/shearpeelingmayleadto rolling contactfatigue(pitting, spalling),
asbothof thesemodesseemto rely uponcrackpropagationin theupperlayerswhosestructure,com-
position,andmechanicalpropertiesareheavilyaffectedby contactstresses.18A reductionin adhesion
andshearstress,e.g.,by amoreeffectivelubricant,mayalleviateadhesive/shearpeelingattheex9ense
of pitting, or viceversa,dependingon therespectivewearrates.

10
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Figure 9 shows surface profilograms of a heavily worn outer ring. Since its wear track exhibited

the adhesive/shear peeling mode, and since figure 9(2) gives a good measure of asperity heights on the
track, an estimate for an average depth of the peeling spalls of the order of 1 to 2 micrometers seems

quite reasonable. An estimate for the lightly worn balls (fig. 2(4)) is of the same order of magnitude,
while that for the heavily worn balls (fig. 2(6)) is an order of magnitude higher.

An XPS study in conjunction with ion sputtering of a heavily worn ball has been carded out in

order to establish depth profiles of particular elements of interest on the surface. Figure 10(1) shows the

presence of a very shallow layer of fluorine (F) which quickly vanishes with the depth below the surface,

thereby indicating the definite possibility of inadequate lubrication with the PTFE. Actually, the abscissa

in figure 10 is the sputter time, but this translates directly into the depth of sputter and that into a depth

below the surface. Figure 10(2) shows a very short transition zone of the iron oxides with depth, and that

may indicate a relatively high rate of oxide removal from the surface by wear. Oxygen (O) and fluorine

(F) peaks in figure 10(3) are very close to the surface, as expected from the conditions of operation of

the bearings.

Wear debris collected from the BSMT outlet filters after bearing tests in lox (fig. 11) consisted of

fragmented glass fibers, PTFE specks from the cage, contaminant particles, and some very thin and

fragile wear flakes coming from the bearing balls and rings. Usually, these flakes were approximately 50
or more micrometers in size and a few to several tens of micrometers in thickness, which had a lot to do

with the filter grade. However, some very large particles (fig. 11(1)) had a surface morphology very

closely resembling that of the rings (fig. 11(4)), or balls, thereby confirming the predominance of the

adhesive/shear peeling mechanism described in this paper. The fact that wear flake surfaces bear an
unmistakable resemblance to the wear surface of balls and/or races is a clear indication of their origin. In

addition, combined with other observations and analyses, it allows for a significant simplification

regarding modeling wear under the circumstances, namely that a third body life 2 of wear debris is

exceedingly short here.

A more detailed analysis of wear debris, and modeling the wear dynamics, will be forthcoming

with an application to the BSMT of the particle collection system (PCS) which has been designed and

implemented by MSFC in close cooperation with the author.

IX. RECOMMENDATIONS FOR FURTHER STUDY

As shown in the preceding sections, this study involved a number of surface science and material

science techniques in application to tribology of wear of the SSME's HPOTP bearings. However, it
seems in order to caution here that most of these techniques have not been well tuned to the tasks of this

project, for a variety of reasons and causes, analysis of which is beyond the scope of this report.

Also, the extent of the study has out-of-necessity been limited to only about 5 percent of the

bearing population, and further curtailed by the workload capacity of the Materials Laboratory to only

about 1 percent of the available wear surface. Nevertheless, the major conclusions reached in this study

(section VI) are fully justified by the quality, if not the volume, of evidence. To clarify this statement, it

is worthy of mention that all elements of the available bearings were carefully examined by the author

using optical microscopy.

11



Undoubtedly,thereis a lot moreinformationstoredon thesurfacetracksof theremaining95-
percentpopulationof theflight bearings,andit couldpossiblyberecoveredif moreemphasisis puton
applicationof theanalyticalcapabilitiesof theMSFC'sMaterialsandProcessesLaboratory.

Thefollowing aresomeof theauthor'smajorrecommendationsfor furtherstudy,aimedatcom-
pletionof theprojectandreachingits majorobjectives(sectionI) andconceivedin anaccordandcon-
sultationwith thesponsor.

1. Collectmoreevidenceonandfurtherstudythedominantwearmodemechanisms.Include
ceramicmaterials.

2. Introduceamathmodelfor thedominantwearmodein termsof operatingconditionsin a
microscale,andrelatethemto theoveralloperatingconditions.

3. Introduceamathematicalmodelfor themechanicalinteractionbetweenelementsof the
bearingwith respectto thefilm transfermechanism.

4. Designandimplementatestprogramto validatethemathematicalwearmodel in termsof
wearrateversusoperatingconditions.A new designof asingle-beatingtesterand/orasingle-contact
apparatusis needed.Theexistinggoxtestermaybeadaptable.

12
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Table 1. Operating conditions.*

' i' ¸¸ :

Radial load 2.56 to 7.13 (kN)

Axial load 6.46 to 10.24 (kN)

Angular velociW, inner ring (IR) 3,141.6 (rad/s)

Angular acceleration (IR), (average, start to FPL)

Environment (coolant)

2.1 kg/s axial mass flow rate, pressure and temperature

Lubricant: transfer film from ball separator seats

dr/film lube coating on race tracks

Hertz contact stress (IR)

785.4 (rad/s 2)

lox

2 MPa and -162 °C

solid PTFE

Mo-S2/Sb203

2.5 to 3.5 (GPa)

Surface temperature: ball and inner race track up to 600 °C

outer ring on O.D., approximatel_¢

*Compiled by the author from NASA and contractors' files.

-150 °C

Table 2. AIS1440C stainless steel

Fe Cr

Composition* 80.25 16.95
(in percent weight)

Propertiest (hardened and tempered)

Tensile strength

0.2-percent yield strength

Percent elongation (in 50 mm)

Percent reduction of area

Hardness (Rockwell C)

C Mo Mn Si Ni Cu P

1.04 0.50 0.36 0.49 0.28 1.04 0.02

1.965 GPa (285 ksi)

1.896 GPa (275 ksi)

2

10

57 (to 61)

' L ¸ _• , •_

*Supplier information.
tT. Baumeister (editor): "Marks' Standard Handbook for Mechanical Engineers," (eighth edition).
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BEAM SPRING

I:UMP END MkIlq tKYIOR _I/RBINE ]gK)

R(3,4)

BAIANCE PISIDN

Figure 1. HPOTP shaft support configuration and bearing preload arrangement. The "balance piston"

design is supposed to balance major axial loads on the shaft. The bearing studied, marked (2),

carries 80 percent of the load on the left support R(1,2)) = 6.06(avg.) + 2.86(alt.) (kN).

i• ' (

• : /i
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(I)

(4)

(2) (5)

(3) (6)

Figure 2. Wear tracks on bearings: (1) inner ring, (2) combined, (3) outer ring, (4) lightly worn balls
(note skid marks), (5) cage (note pocket wear), and (6) heavily worn balls.
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(5)

(2)

(1)

(5)

Figure 3. Heavily worn inner ring No. 352. SEM micrographs across the wear track: (1) plastic flow
near the land, × 100; (2) adhesive/shear peeling, x 100; (3) contact fatigue, x 100; (4) detail of

(2), x 500; and (5) detail of (4), × 2,500.
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83

Heavily worn inner ring No. 352 (continued). SEM micrographs across the contact fatigued

area of the wear track: (1) spalls, x 100; (2) spalls, x 250; (3) detail of (2), x 1,000; (4) fatigue

flake, detail of (3), x 5,000; (5) EDS overall; and (6) EDS inside a spall.
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Figure 6. Heavily worn ball No. 12 (bearing No. 352): adhesive/shear peeling wear and early contact

fatigue. Microprobe SEM and EDS graphs. (1) Surface cracks, × 3,360; (2) surface peeling

and submicron size debris, x 1,000; (3) detail of (2), x 5,000; (4) microprobe EDS inside a

spall, and (5) EDS overall.
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1,000

Figure 7. Lightly worn ball No. 10 (bearing No. 611): adhesive/shear peeling wear mode.
Optical micrographs at x 50, x 100, x 400, and x 1,000.
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Figure 8. Lightly worn ball No. 1 (bearing No. 500): (1) adhesive/shear peeling (black spots) and virgin
surface (white background, actually goldish) with original machining marks (dotted lines) still
visible; (2) detail of (1) shows the dotted lines to also have the adhesive/shear origin; (3)

finishing marks on a brand new ball. Optical micrographs.
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Figure 10. Depth profiling of a heavily worn ball. X-ray photoelectron spectroscopy: (1) fluorine,
(2) iron, and (3) combined diagram.
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Figure 11. BSMT wear debris (x 100): (1) large flake, (2) overall, (3) composite flake showing
secondary peeling, and (4) inner ring wear track.
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Separable angular contact
ball bearing

Figure A-1. Angular contact ball beating. Wear patterns in axial loading.
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Figure A-5.
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x 750

SEM of the microfatigued area on wear track of the inner ring of bearing No. 352.



_ _!_:_,oN _.,

x 100
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x 5,000

Figure A-6. SEM of the microfatigued area on wear track of the inner ring of bearing No. 352,
Note grainy appearance of the spall bottom°
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Figure A-7. SEM/EDS on microfatigued area. Wear track of the inner ring of bearing No. 352.
Note high Cr concentration inside the spall.
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x 100

x 100

x 100

Figure A-8. Optical microscopy (OM) of the wear track on the inner ring of bearing No. 352.

Note many spalls, holes, and scratches.
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Figure A-9.
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x 400

OM of a ball surface in bearing No. 352. The dominant wear mode is

adhesive/shear peeling. Note many dark pits.
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Figure A-10. OM of a ball surface in bearing No. 352. Adhesive/shear peeling of the upper layer may
involve brittle fracture or low cycle fatigue. Note many cracks and wear debris inside dark pits.
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x 100

x 1,000

Figure A-11. Micro 9robe SEM of a ball surface in bearing No. 352. Adhesive/shear peeling of the
upper layer. Note many fatigue cracks.
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C1) x 1,000

(2) x 1,000

Figure A- 12. Microprobe analysis of a ball surface in bearing No. 352 (the same area as in fig. A-11).
(1) Cr distribution along the horizontal line, note Cr concentration inside spalls; and (2)

overall Cr distribution.

39



: • !::1% • • • •

4_
O

2-May-1991

BASE

Vert = 434 Counts Disp = i

4S4[

_._lI -

347l

3041

E6O'

174[

i30 •

B7

43

SI NO

I.O0 a._O _:. L'_._ 4.U_

i
Figure A-13. Microprobe analysis of a ball surface in beating No. 352. Note presence of Si

(ingredient in glass fibers of Armalon cages).

Scale = O.OiO

Range ,- :10.23

keV/Ch
keY



2-May-1991

DARK

li!

97

83

7O

56

4_

Vert = 139 Counts oisp--

42

29

14

FE

S

ZZ_ K CA TI

CR

FE

ZN

P.R _ ,I,

,,k .. _ ,, ZN

j L/ -"' ''_-L-.J V_ V L_.V\_
_. O0 2. O0 9, O0 4. O0 5. O0 6. O0 7. O0 B O0 g O0 lO. O0

Scale = 0.010

Range - t0.23

Figure A-14. Microprobe analysis of a ball surface pit in bearing No. 352. Note presence of elements foreign to the system like Zn,
Ti and P, all or some of which may have entered the bearing with lox as contaminants° Also compare figures A-54

through A-62.

keV/Ch
keY



4_
to

............................................_ilo: BA,LBAODP_iOato:5,_2,_99_!_?_.............%u ......_I000OU°:00eVI
iDisc: JHS !# of Scans: 4 Resolution: 4 i

Description: SSME BALL .HPOTP. HEAVILLY USED. SPALLING SEEN AES. Operator: I.D ,!

SPUTT. O. Element: Fe2pS/, i

! | | ! l

740.0 Binding Energy (eV)

Medium

71o,'; q

angle display
,._

&o

700.0

NASA-MSFC MATERIALS _PROCESSES LAB . MET , FAILURE ANAL.EH-22. Report #: BALLBADDP41

Figure A-15. XPS sputtering for depth profiling on a ball of bearing No. 352. Note iron (oxide) transformation

(indicated by the shift of peak of binding energy with time).
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Figure A- 18. XPS sputtering for depth prof'ding on a ball of bearing No. 352. The surface peak indicates carbon

absorbed from the air. The lower peak may indicate presence of a subsurface carbide.
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Figure A- 19. XPS sputtering for depth profiling on a ball of beating No. 352. Note how the surface peak of fluorine

(basic constituent of PTFE) quickly vanishes with depth, thus indicating that a lubricant layer is very
shallow°
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Figure A-20o XPS sputtering for depth profiling on a ball of bearing No. 352. Combined results.
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Figure A-22. OM of a very lightly worn ball of bearing No. 611: adhesive/shear peeling wear mode.
Compare figure A-10 (very heavily worn ball).
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Figure A-23.

x 5O

x 20O

x 400

OM of a representative ball of bearing No. 857 shows the same adhesive/shear peeling
wear mode as in figure A-22.
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Figure A-24. OM of a lightly worn ball of bearing No. 857. Adhesive/shear peeling mode of wear.
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OM of a worn ball of bearing No. 477. Adhesive/shear peeling mode of wear

(on a dark track).
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Figure A-26.
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1,000

OM of a worn ball of bearing No. 477. Adhesive/shear peeling mode
(heavy wear on a dark track).
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Figure A-27. OM of a very lightly worn ball of bearing No. 500. Adhesive/shear peeling mode
(moderately heavy wear on a dark track).
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x 200

x 400

Figure A-30.

× 200

OM of a very lightly worn ball of bearing No. 493. The predominant wear mode of the

track is very light adhesive/shear peeling. Note scratches (probably from contact with the

Armalon glass fibers, compare figure A-48).
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Figure A-31. OM of a worn ball of bearing No. 578. The predominant mode of the wear tracks is
adhesive/shear peeling. Many pits are elongated in the direction of the track, most likely

due to high traction (shear) stresses, which may also indicate insufficient lubrication.
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Figure A-32. OM of a worn ball of bearing No. 578. The predominant mode is adhesive/shear

peeling. Note many transfer patches.
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Figure A-33.

60

x 1,000

OM of a lightly worn ball of bearing No. 543. The focus is on the crossing of wear tracks

which show adhesive/shear peeling, material transfer, and some deeper pits due to a

possibly violent contact with either a cage material or a contaminant debris.



FigureA-34.
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OM of a lightly worn ball of bearing No. 543. The focus is on an arrow-like scratch, a

single event producing the adhesive/shear effects like those of the predominant wear

mode in all bearings examined.
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CI) x 1,000
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(2)

Figure A-35°
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i !_,-_ x 1,000

OM of a lightly worn ball of bearing No. 543 (continued). The focus on top layers (1)

shows the same surface morphology as the focus on bottom layers (2) of the scratch area.

Thus both layers were formed by the same basic mechanisms, namely the adhesive/shear

peeling.
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Figure A-36.

(1) x 1,000

(2) x 1,000

(3)

Surface damage (ball, bearing No. 493) by a spherical contaminant particle: (1) focus on

the top, (2) focus on the bottom, (3) a particle found on the BSMT inlet filter, and (4) a

black spherical particle found on the BSMT outlet filter. Optical microscopy.
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Figure A-37. Surface damage (inner ring, bearing No. 611) by contaminant particles
and adhesive/shear peeling. Optical microscopy.
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Figure A-38. Surface damage (inner ring, bearing No. 611) by contaminant particles and adhesive/shear

peeling. Note a very light corrosion on the unworn surface. Optical microscopy.
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x 1,000
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x 5,000

Figure A-39. Surface damage (inner ring, bearing No. 611) by contaminant particles
and adhesive/shear peeling (SEM).
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Figure A-40. SEM/EDS of a lightly worn ball of bearing No. 611. A microspall of classic proportions.

Note wear debris whose shape and chemistry (A1, Si) are not inconsistent with those of

the glass fibers in the Armalon cage.
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x 750

Figure A-41.

68

x 1,500

SEM of the inner ring of bearing No. 352: a scratch mark on the worn surface at an angle

to the track. It may have been caused by a contaminant particle or a glass fiber on a ball

which changed its running trajectory due to a side-loadinduced by the particle.



x 1,000

L

Figure A-42.

x 1,000

SEM of the inner ring of bearing No. 352. Machining marks on the upper fillet for

comparison with figure A-41.
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x 100
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x 2,500

Figure A-44.

x 10,000

SEM/EDS of a dark patch on a very lightly worn ball of beating No. 611. Analysis at a

high magnification reveals a laminar structure of the residue, characteristic of

molybdenum disulfide, an ingredient of the solid lubricant initially applied to the bearings

at the assembly.
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i x 75O

• :

Figure A-45.

x 1,750

SEM of a particle found on the inner ring of a very lightly worn bearing No. 611. Its

origin is uncertain. Also, note many cuts, scratches, and pits on the ring. Compare figures
A-46 and A-47.
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Figure A-46. EDS of a particle found on the inner ring of a very lightly worn bearing No. 611. Note

presence of many contaminants which can be seen in figures A-54 through A-62 (inlet

filter)°
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Figure A-47. EDS of the background of the particle shown in figure A-46, beating No. 611.
Note absence of many contaminants found there.
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x 100
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Figure A-48. OM of the heavily worn ball (bearing No. 352): (1) the glass fiber inflicted damage to the

surface layer, and (2) ball pocket edge with glass fibers. Note size and spacing of fibers.
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Figure A-49.

76

(2)

x 100

OM of the inner ring of the heavily worn bearing No. 352: (1) ball skid marks in the high

fillet area, (2) freshly exposed new surface after peeling-off, and a flake.



] .... ': ,'i"

_:i:!:!:!:i:i:i:i:!:!:!:!:i:i:?i

_:'::ii::? :_::':: :::i!_ ......_ :",::'":"_i:ii:_iiiii_.;_ !:.i!i_iii_i!*_i!_!!!:i:ii_i::!i:i:ili::/!!
_'_i_;i:i:i:: :;_:_:i:!:i:!:::?'::'__::: _ :_ '_ '::i:: :_:i_i:i:i'i:i:!:i:i:::i:!:::i:?!%i:i:
:'. ._i!_:i:_!ii!ii::i.:.: :' • ._: i'::i . _:i::'il::i:i:i::!!i::i!_::i:::!!i!:_!::i!i:?'_
_. ...:::;i:i:i:!::_'_:::z:::i:i:::!:" :'"..'.'::::::'::':: : '!:'i__ '!_:_:S!_!__ _.:_::i::7 i: :
i!i!i::" "_i!i!ii_!!_!!!ii!_i!!i!i_i:_i_i'iiiiii!iI,....... _::!:_-!: • ' _ :_' _::_i:__": " ' i_ii!:_::_:i_i_
_!__i_., _i_ii:i!i_!i!?_iii:iii__ _!....... • :i _ .....:':_'_il -'!:';_i'i_

x lO0

x 100

,, , , H'-:'H.... =_: ...........................

•::_::::_:i::_
: =======================100

?!i::_:i:i:_:_:!•i:i:_i:_:i:i:i:_:_:_:_:_:!_:_:_:_:!:!:!:i:i:!:!:!:_:!:_:_:_:_:!:!:!:!:!:_:?_

Figure A-50. OM of the inner ring of the heavily worn bearing No. 352, from the top (fillet area) to the
bottom (unworn cylindrical surface). Patterns of the adhesive/shear peeling can be seen.
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Figure A-51.

78

OM of the inner ring of the heavily worn bearing No. 352: a freshly exposed new surface

after peeling-off and a flake. Note that both photos show nearly the same area, and that
black or white coloration may be reversed depending on the orientation of a highly

reflective surface like this.
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(i)

(2)

_:. _ : _

x 100

x 100

(,3) x 100

Figure A-52. OM of the inner ring of the lightly worn bearing No. 611, (1) and (2). Note how similar

these photos are to figure A-51. (3) A large flake found on the BSMT outlet filter. Note

that surface morphology is just like that of (1), (2), or figure A-51.
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Figure A-53.
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(2) , x 200

OM of a lightly worn ball of bearing No. 543. Focus on the background (1) shows

adhesive/shear peeling; focus on the wear particle (2) shows a piece of the cage Teflon

and a glass fiber.
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(1)

National Aeronautics and

Space Administration

George C. Marshall Space Flight Center

Marsi%all Space Flight Center, Alabama 35812
AC(205)54A-2121

EH32 (91-104) March 25, 1991

TO: EH22/R. A. Parr

FROM: EH32/S. V. Caruso

SUBJECT: Analyses of Debris from Bearing Tester

The subject samples have been analyzed as re_lested

(EH32-91-132). A particle count by size was performed and

the results are shown in the enclosed contamination analysis

report. X-ray fluorescence spectroscopy indicated the

results listed below.

sample

Fe 1253-i0

Fe 1253-40

Fe 2643-10

Elements Detected

Si, Fe, Cr, Ni, Cu, Mo

Si, Fe, Cr, Ni, Cu, Mo

Cr, Fe, Ni, Cu

Please contact Ms. Marceia Clark-Ingram at 544-6229 or Mr.

Anthony Berry at 544-5395.

Chief, Analytical and

Physical Chemistry Branch

Enclosure

cc:

EH22/Messrs. Gentz/Henderson

EH31/Mr. McIntosh

EH32/Mr. Berry
NASA

EH32/Ms. Clark-Ingrain Marshall Space Flight Center

Analytical and Physical Chemistry
E1132

Component: Mtlltpore pa d

Requested by: Hendereo.

Date: 2-25-91

Test Method: Particle Coun_

(2)

Particle Count by Micron slze

ZD _ 16-25 26-5O 51-100 I01-500 501-1000 >1000

1-2-25-91 FE-1253-I0 86,039 100,173 53,371 5,214 511 1,106 74

2-2-25-91 FE-1253-40 147,281 119,146 123,479 91,934 77,514 28 13

3-2-25-91 FE-2643-I0 R9,515 71,256 76,502 64,101 503 42 6

Remarks: The above Dartlole counts are aDnroximatlons,

Figure A-54. Analysis of the wear debris found on the BSMT filters (1) and

a particle count (2).
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National Aeronautics and

Space Administration

George C. Marshall Space Flight Center
Marst_ail Space FHg'nt Canter, Alat_ama 35812

AC(205)5,¢,¢-2121

I ASA

EH32 (9Z-03) Januaz-z 14, 199_
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Figure A-55. Analysis of the wear debris found on the BSMT inlet filter.
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"/ Figure A-56. SEM/EDS of a large Si contaminant particle found on the BSMT inlet filter.
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SEM/EDS of a large 440C contaminant particle found on the BSMT inlet filter.

It is unclear how it was deposited there.
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Figure A-58. SEM/EDS of a large Ti-Pb contaminant particle found on the BSMT inlet filter.
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Figure A-59. SEM/EDS of a large A1 contaminant particle found on the BSMT inlet filter.
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Figure A-60. SEM/EDS of a large A1-Cr-Si-Zr contaminant particle found on the BSMT inlet filter.
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Figure A-61. SEM/EDS of a large Cr contaminant particle found on the BSMT inlet filter.
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Figure A-62. SEM/EDS of a large Cu-Sn contaminant particle found on the BSMT inlet filter.
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Figure A-63.

90

(4)

OM of the wear debris found on the BSMT outlet filter: (1) large metallic flake,

(2) large PTFE chunk, (3) glass fiber, and (4) overall.
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File: BBDEBREE2 []aLe: 12/24/1990

Disc: dHS

Spot" 300 u

# of Scans: 1

Flood Gun: 5.0 eV

Reso!ut:ton: 4

DescPiption:

i

DEBREE FROM BALLBEARING
TER PAPER.ARXPS.9ODEG.

i I i
1000

h

I

TESTS &CCUMULATED ON FILT-

0 l i

Operator" I.D

i i
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NASA-MSFC MATERIALS 6PROCESSES LAB . MET. FAILURE ANAL.EH-22. r_,.:port#: BBDEBREEI

Figure A-66. XPS analysis of the wear debris from the BSMT outlet filter. Note presence of iron oxides,

calcium (glass fiber), and Teflon (fluorine).
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Figure A-67. OM of the surface of a brand new 440C ball. Note adhesive/shear
peeling-like appearance of the finish marks°
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Figure A-68. OM of the heavily worn 440C balls from the BSMT tests in lox:

adhesive/shear peeling wear mode is predominant.
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Figure A-70. OM of the heavily worn 440C balls from the past BSMT tests in LN2:

adhesive/shear peeling wear mode is predominant. Observe the variety of patterns.
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Figure A-71. OM of the heavily worn 440C balls from the past BSMT tests in LN2:

adhesive/shear peeling wear mode is predominant. Note black coloration.
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Figure A-70.

(i)

x 100
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OM of the heavily worn 440C balls from the past BSMT tests in LN2: adhesive/shear

peeling wear mode is predominant. Note abrasive and polishing action of the cage pocket
glass fibers (1).
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Analysis of Bearing Incidents in Aircraft Gas Turbine
Mainshaft Bearings ©

B. L. AVERBACH

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

and

E. N. BAMBERGER

General Electric Aircraft Engine Business Group

Cincinnati, Ohio 45215

Fia, 2--Surface damaoe resu(tinq from ball _kidd{_

Figure A-73. Surface damage to bearing rings resulting from ball skidding in poorly lubricated

gas turbine bearings from reference 22.
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